Shared References

← Back to browse

Tag: coreset-selection (3 references)

DeepCore: A Comprehensive Library for Coreset Selection in Deep Learning 2022 article

Chengcheng Guo, Bo Zhao, Yanbing Bai

Comprehensive library and empirical study of coreset selection methods for deep learning, finding that random selection remains a strong baseline across many settings.

Coresets for Data-efficient Training of Machine Learning Models 2020 inproceedings

Baharan Mirzasoleiman, Jeff Bilmes, Jure Leskovec

Introduces CRAIG (Coresets for Accelerating Incremental Gradient descent), selecting subsets that approximate full gradient for 2-3x training speedups while maintaining performance.

Active Learning for Convolutional Neural Networks: A Core-Set Approach 2018 inproceedings

Ozan Sener, Silvio Savarese

Defines active learning as core-set selection, choosing points such that a model trained on the subset is competitive for remaining data. Provides theoretical bounds via k-Center problem.