Data Leverage References

← Back to browse

Tag: language-models (61 references)

LLM Social Simulations Are a Promising Research Method 2025 article

Jacy Reese Anthis, Ryan Liu, Sean M. Richardson, Austin C. Kozlowski, Bernard Koch, James Evans, Erik Brynjolfsson, Michael Bernstein

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning 2025 article

DeepSeek-AI

Exploring the limits of strong membership inference attacks on large language models 2025 article

Jamie Hayes, Ilia Shumailov, Christopher A. Choquette-Choo, Matthew Jagielski, George Kaissis, Milad Nasr, Sahra Ghalebikesabi, Meenatchi Sundaram Mutu Selva Annamalai, Niloofar Mireshghallah, Igor Shilov, Matthieu Meeus, Yves-Alexandre de Montjoye, Katherine Lee, Franziska Boenisch, Adam Dziedzic, A. Feder Cooper

Extending "GPTs Are GPTs" to Firms 2025 article

Benjamin Labaschin, Tyna Eloundou, Sam Manning, Pamela Mishkin, Daniel Rock

OLMoTrace: Tracing Language Model Outputs Back to Trillions of Training Tokens 2025 article

Jiacheng Liu, Thomas N. Blanton, Sewon Min, Arnavi Chheda-Kothary, Huy Tran, Eric Marsh, Cassidy Trier, John T. James, Jon Borchardt, Evie Yu-Yen Cheng

Rethinking machine unlearning for large language models 2025 article

Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Yuguang Yao, Chris Yuhao Liu, Xiaojun Xu, Hang Li, Kush R. Varshney, Mohit Bansal, Sanmi Koyejo, Yang Liu

Comprehensive review of machine unlearning in LLMs, aiming to eliminate undesirable data influence (sensitive or illegal information) while maintaining essential knowledge generation. Envisions LLM unlearning as a pivotal element in life-cycle management for developing safe, secure, trustworthy, and resource-efficient generative AI.

The Multilingual Alignment Prism: Aligning Global and Local Preferences to Reduce Harm 2024 article

Aakanksha, Arash Ahmadian, Beyza Ermis, Seraphina Goldfarb-Tarrant, Julia Kreutzer, Marzieh Fadaee, Sara Hooker

The Rise of AI-Generated Content in Wikipedia 2024 article

Creston Brooks, Samuel Eggert, Denis Peskoff

What is Your Data Worth to GPT? LLM-Scale Data Valuation with Influence Functions 2024 article

Sang Keun Choe, Hwijeen Ahn, Juhan Bae, Kewen Zhao, Minsoo Kang, Youngseog Chung, Adithya Pratapa, Willie Neiswanger, Emma Strubell, Teruko Mitamura

Large language models reduce public knowledge sharing on online Q&A platforms 2024 article

R. Maria del Rio-Chanona, Nadzeya Laurentsyeva, Johannes Wachs

GPTs are GPTs: Labor Market Impact Potential of LLMs 2024 article

Tyna Eloundou, Sam Manning, Pamela Mishkin, Daniel Rock

Sleeper Agents: Training Deceptive LLMs that Persist Through Safety Training 2024 misc

Evan Hubinger, Carson Denison, Jesse Mu, Mike Lambert, Meg Tong, Monte MacDiarmid, Tamera Lanham, Daniel M. Ziegler, Tim Maxwell, Newton Cheng, Adam Jermyn, Amanda Askell, Ansh Radhakrishnan, Cem Anil, David Duvenaud, Deep Ganguli, Fazl Barez, Jack Clark, Kamal Ndousse, Kshitij Sachan, Michael Sellitto, Mrinank Sharma, Nova DasSarma, Roger Grosse, Shauna Kravec, Yuntao Bai, Zachary Witten, Marina Favaro, Jan Brauner, Holden Karnofsky, Paul Christiano, Samuel R. Bowman, Logan Graham, Jared Kaplan, Sören Mindermann, Ryan Greenblatt, Buck Shlegeris, Nicholas Schiefer, Ethan Perez

StarCoder 2 and The Stack v2: The Next Generation 2024 misc

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, Harm de Vries

LLM Dataset Inference: Did you train on my dataset? 2024 article

Pratyush Maini, Hengrui Jia, Nicolas Papernot, Adam Dziedzic

Scalable Data Ablation Approximations for Language Models through Modular Training and Merging 2024 inproceedings

Clara Na, Ian Magnusson, Ananya Harsh Jha, Tom Sherborne, Emma Strubell, Jesse Dodge, Pradeep Dasigi

A Canary in the AI Coal Mine: American Jews May Be Disproportionately Harmed by Intellectual Property Dispossession in Large Language Model Training 2024 article

Heila Precel, Allison McDonald, Brent Hecht, Nicholas Vincent

Data Flywheels for LLM Applications 2024 misc

Shankar, Shreya

Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research 2024 article

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur, Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Harsh Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Abhilasha Ravichander, Kyle Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Pete Walsh, Luke Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge, Kyle Lo

Aya Model: An Instruction Finetuned Open-Access Multilingual Language Model 2024 article

Ahmet Üstün, Viraat Aryabumi, Zheng-Xin Yong, Wei-Yin Ko, Daniel D'souza, Gbemileke Onilude, Neel Bhandari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid, Freddie Vargus, Phil Blunsom, Shayne Longpre, Niklas Muennighoff, Marzieh Fadaee, Julia Kreutzer, Sara Hooker

LLM Unlearning via Loss Adjustment with Only Forget Data 2024 inproceedings

Yaxuan Wang, Jiaheng Wei, Chris Yuhao Liu, Jinlong Pang, Quan Liu, Ankit Parag Shah, Yujia Bao, Yang Liu, Wei Wei

FLAT is a loss adjustment approach which maximizes f-divergence between the available template answer and the forget answer with respect to the forget data. Demonstrates superior unlearning performance compared to existing methods while minimizing impact on retained capabilities, tested on Harry Potter dataset and MUSE Benchmark.

Enhancing Training Data Attribution for Large Language Models with Fitting Error Consideration 2024 inproceedings

Kangxi Wu, Liang Pang, Huawei Shen, Xueqi Cheng

Enhances training data attribution methods for large language models including LLaMA2, QWEN2, and Mistral by considering fitting error in the attribution process.

Position Paper: Data-Centric AI in the Age of Large Language Models 2024 inproceedings

Xinyi Xu, Zhaoxuan Wu, Rui Qiao, Arun Verma, Yao Shu, Jingtan Wang, Xinyuan Niu, Zhenfeng He, Jiangwei Chen, Zijian Zhou, Gregory Kang Ruey Lau, Hieu Dao, Lucas Agussurja, Rachael Hwee Ling Sim, Xiaoqiang Lin, Wenyang Hu, Zhongxiang Dai, Pang Wei Koh, Bryan Kian Hsiang Low

Position paper identifying four specific scenarios centered around data for LLMs, covering data-centric benchmarks and data curation, data attribution, knowledge transfer, and inference contextualization.

Alpaca: A Strong, Replicable Instruction-Following Model 2023 misc
Quantifying Memorization Across Neural Language Models 2023 inproceedings

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, Chiyuan Zhang

Speak, Memory: An Archaeology of Books Known to ChatGPT/GPT-4 2023 article

Kent K. Chang, Mackenzie Cramer, Sandeep Soni, David Bamman

Direct Preference Optimization: Your Language Model is Secretly a Reward Model 2023 article

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, Chelsea Finn

A Watermark for Large Language Models 2023 article

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, Tom Goldstein

Textbooks Are All You Need II: phi-1.5 technical report 2023 article

Yuanzhi Li, Sebastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, Yin Tat Lee

Trustworthy LLMs: a Survey and Guideline for Evaluating Large Language Models' Alignment 2023 article

Yang Liu, Yuanshun Yao, Jean-Francois Ton, Xiaoying Zhang, Ruocheng Guo, Hao Cheng, Yegor Klochkov, Muhammad Faaiz Taufiq, Hang Li

SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore 2023 article

Sewon Min, Suchin Gururangan, Eric Wallace, Weijia Shi, Hannaneh Hajishirzi, Noah A. Smith, Luke Zettlemoyer

OWASP Top 10 for Large Language Model Applications 2023 misc
DeepCore: A Comprehensive Library for Coreset Selection in Deep Learning 2022 article

Chengcheng Guo, Bo Zhao, Yanbing Bai

Comprehensive library and empirical study of coreset selection methods for deep learning, finding that random selection remains a strong baseline across many settings.

Training Compute-Optimal Large Language Models 2022 inproceedings

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, Laurent Sifre

Shows that current LLMs are significantly undertrained. For compute-optimal training, model size and training tokens should scale equally. Introduces Chinchilla (70B params, 1.4T tokens) which outperforms larger models like Gopher (280B) trained on less data.

Training language models to follow instructions with human feedback 2022 article

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, Ryan Lowe

Probabilistic Machine Learning: An Introduction 2022 book

Kevin P. Murphy

Introducing Whisper 2022 misc
Robust Speech Recognition via Large-Scale Weak Supervision 2022 article

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever

On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? 2021 inproceedings

Bender, Emily M., Gebru, Timnit, McMillan-Major, Angelina, Shmitchell, Shmargaret

Extracting Training Data from Large Language Models 2021 inproceedings

Carlini, Nicholas, Tramer, Florian, Wallace, Eric, Jagielski, Matthew, Herbert-Voss, Ariel, Lee, Katherine, Roberts, Adam, Brown, Tom B., Song, Dawn, Erlingsson, {\'U}lfar, Oprea, Alina, Papernot, Nicolas

Measuring Mathematical Problem Solving With the MATH Dataset 2021 article

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, Jacob Steinhardt

The Pile: An 800GB Dataset of Diverse Text for Language Modeling 2021 article

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, Connor Leahy

Ethical and Social Risks of Harm from Language Models 2021 article

Weidinger, Laura, Mellor, John, Rauh, Maribeth, Griffin, Conor, Uesato, Jonathan, Huang, Po-Sen, Cheng, Myra, Glaese, Mia, Balle, Borja, Kasirzadeh, Atoosa, Kenton, Zac, Brown, Sasha, Hawkins, Will, Stepleton, Tom, Biles, Courtney, Birhane, Abeba, Haas, Julia, Rimell, Laura, Hendricks, Lisa Anne, Isaac, William, Legassick, Sean, Irving, Geoffrey, Gabriel, Iason

Language Models are Few-Shot Learners 2020 article

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, Dario Amodei

Lessons from Archives: Strategies for Collecting Sociocultural Data in Machine Learning 2020 inproceedings
Scaling Laws for Neural Language Models 2020 article

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, Dario Amodei

Establishes power-law scaling relationships between language model performance and model size, dataset size, and compute, spanning seven orders of magnitude.

Deep Double Descent: Where Bigger Models and More Data Hurt 2020 inproceedings

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, Ilya Sutskever

Demonstrates that double descent occurs across model size, training epochs, and dataset size in modern deep networks. Introduces effective model complexity to unify these phenomena and shows regimes where more data hurts.

interpreting GPT: the logit lens 2020 misc
Common voice: A massively-multilingual speech corpus 2019 article

Ardila, Rosana, Branson, Megan, Davis, Kelly, Henretty, Michael, Kohler, Michael, Meyer, Josh, Morais, Reuben, Saunders, Lindsay, Tyers, Francis M, Weber, Gregor

The Secret Sharer: Measuring Unintended Memorization in Neural Networks 2019 inproceedings

Carlini, Nicholas, Liu, Chang, Erlingsson, {\'U}lfar, Kos, Jernej, Song, Dawn

Excavating AI: The Politics of Images in Machine Learning Training Sets 2019 misc
A Survey on Image Data Augmentation for Deep Learning 2019 article

Connor Shorten, Taghi M. Khoshgoftaar

Comprehensive survey of image data augmentation techniques for deep learning, covering geometric transformations, color space transforms, kernel filters, mixing images, random erasing, and neural style transfer approaches.

Troubling Trends in Machine Learning Scholarship 2018 article

Zachary C. Lipton, Jacob Steinhardt

Active Learning for Convolutional Neural Networks: A Core-Set Approach 2018 inproceedings

Ozan Sener, Silvio Savarese

Defines active learning as core-set selection, choosing points such that a model trained on the subset is competitive for remaining data. Provides theoretical bounds via k-Center problem.

Deep learning scaling is predictable, empirically 2017 article

Hestness, Joel, Narang, Sharan, Ardalani, Newsha, Diamos, Gregory, Jun, Heewoo, Kianinejad, Hassan, Patwary, Md, Ali, Mostofa, Yang, Yang, Zhou, Yanqi

Stanford Alpaca GitHub Repository misc
Alpaca Data Cleaned Repository misc
Databricks Dolly Repository misc
GSM8K Hugging Face Dataset Card misc
Grade-School Math (GSM8K) Repository misc
Competition Math Dataset on Hugging Face misc
OpenAI API Reference – Chat Completions misc